CLEANRATH WIND FARM

Formation Approval Report TI, T3, T4, T5, T8

NII7-2400 IEC3a Foundations

Ionic Consulting Ltd The Hyde Building The Park, Carrickmines Dublin 18, Ireland

T: +353 | 845 503| F: +353 | 845 56|2 www.ionicconsulting.ie

Document History

Doc Name	Rev	Details	Author	Checked	Approved
CNRH r027.3	А	Initial Issue	Cormac Ó Dubhthaigh	John Shanahan	Cormac Ó Dubhthaigh
CNRH r027.3	В	Turbine numbering revised	Niamh Moore	Cormac Ó Dubhthaigh	Cormac Ó Dubhthaigh

CNRH r027.3 Cleanrath N117-2400 IEC3a Formation Approval Report Rev B

Confidentiality

This document contains proprietary and confidential information, which is provided on a commercial in confidence basis. It may not be reproduced or provided in any manner to any third party without the consent of lonic Consulting.

© Copyright Ionic Consulting

This work and the information contained in it are the copyright of lonic Consulting. No part of this document may be reprinted or reproduced without the consent of lonic Consulting.

Addressee

The contents of this report are for the exclusive use of the Client. If other parties choose to rely on the contents of this report they do so at their own risk.

Disclaimer

lonic Consulting have performed the consultancy services as described in this report in accordance with a standard of best practice available within the industry. Ionic Consulting do not make any representations or warranty, expressed or otherwise as to the accuracy or completeness of the source data used in this report, and nothing contained herein is, or shall be relied upon, as a promise or representation, whether as to the past or the future in respect of that source data.

This document has been prepared by

Comac of Jullhay

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

This report has been checked by

John Shanahan BE MSc CEng MIEI Senior Civil Engineer Ionic Consulting

This report has been authorised by

Sullhan amac O

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

CONTENTS

Ι.	INT	TRODUCTION	5
2.	FO	UNDATION DESIGN	5
		RMATION INSPECTIONS	
3	5. I	General Details	7
3	.2	Ground Conditions	7
3	.3	Summary	3
4.	IN	SITU TESTING	
5.	SU	MMARY)
AP	PEN	DICESI	
AP	PEN	DIX A – FORMATION INSPECTION LOG SHEETSI	
		DIX B – FORMATION APPROVAL CERTIFICATES	
		DIX C – PLATE BEARING TESTS RESULTS (T4 UPFILL)	
		DIX D – NORDEX N117-2400 LOADING & STIFFNESS DOCUMENT	

I. INTRODUCTION

Ionic Consulting was appointed by Mid Cork Electrical Ltd. to carry out formation approval for all wind turbine foundation bases at Cleanrath Wind Farm in Co. Cork. The wind farm comprises 15 no. Nordex turbines, including 6 no. N100 3.3MW 100mHH Class IEC1a turbines, 4 no. N117 91mHH 3.6MW Class IEC2a turbines and 5 no. N117 91mHH 2.4MW Class IEC3a turbines.

This report relates to the 5 N117 2.4MW IEC3a turbines which are numbered T1, T3, T4, T5 and T8.

The N117-2400 turbines are located in the eastern portion of the eastern cluster at Cleanrath, whereas the remaining N117 turbines are located to the west of that cluster and the N100 turbines are in a separate cluster 2km to the west at Derragh. The project includes the two clusters but is collectively known as Cleanrath Wind Farm.

As part of the site supervision works, lonic assessed the founding formation strata for all gravity bases to ensure it met the required design criteria. This report summarises the ground conditions encountered within each of the turbine foundation excavations and has been prepared with reference also to the Geotechnical Investigation Report CNRH r007.1 undertaken by Ionic Consulting. The inspections undertaken at each formation location included a visual inspection, assessment of levels and widths, photographic recording and in-situ plate bearing testing where required.

lonic previously carried out a detailed design of the turbine foundations based on the Nordex N117 91mHH 2.4MW Class IEC3a wind loading documents and insert arrangements details, coupled with the site investigation data detailed in the aforementioned geotechnical report.

A foundation design report has been produced alongside the foundation calculations covering the structural and geotechnical analysis of the site conditions.

Note that this document has been updated for the purposes of inclusion in a Remedial Environmental Impact Assessment Report for Cleanrath Wind Farm as part of a substitute consent application to An Bord Pleanála. The updates to the document relate only to the turbine numbering where it reverts to the original numbering system used when the project was originally proposed for planning permission.

2. FOUNDATION DESIGN

The initial geotechnical investigations were undertaken by lonic Consulting in May-June 2019, including a site walkover and assessment of earlier site investigation documents from planning stage. The detailed geotechnical investigation consisted of borehole drilling at a total of 7 locations and was carried out between March and April 2019, along with physical and chemical testing of samples taken. Due to ground conditions which include extensive rock outcrop on higher ground a number of turbine locations were selected for borehole drilling thereby providing a representative outline of ground conditions across the site. The chosen turbine locations ensured that boreholes were carried out in each sub-cluster and for each turbine type. The borehole drilling confirmed findings of shallow bedrock at most locations as generally encountered during initial base excavations. The boreholes relevant to this report were drilled at the lower lying turbines within or adjacent to the valley east of the hill at T3 and T4. The borehole logs and laboratory testing results are provided in the appendices of the Geotechnical Investigation Report (*CNRH r007.1*). The information gathered during the geotechnical investigations assisted the designers in the design of the wind turbine foundations, and at formation approval stage any assumptions on strength and stiffness were confirmed.

Wind loads used in the design of the foundation are detailed within Nordex N11791mHH 2.4MW Class IEC3a loading document ref: K0822_066224_IN_R01_Fundament_N117_R91opt_DIBT. One standard partially buoyant gravity foundation design was provided for these 5 turbine locations T1, T3, T4, T5, and T8, based upon the ground conditions encountered and the high groundwater table. The level of the buoyant gravity base is set with the underside of tower bottom section at +1.1m relative to original ground level, and the design water level is taken as original ground level which results in a partially submerged scenario for the foundation. The ultimate design bearing resistance was conservatively estimated based on the ground investigation data to be greater than 500kN/m² for the siltstone bedrock at formation level. Given the shallow depth to bedrock at all locations with the exception of T4 direct blinding on bedrock is proposed at 4 of the 5 locations with no additional engineering fill material required to bring it to foundation level. The base at T4 was excavated to bedrock at an average depth of 5.9m, and 3.5m of 6N engineering fill was required to bring to the required foundation level. The maximum applied bearing pressure at ultimate loads ranged from 120 to 146kN/m² for the gravity foundations, all well below the ultimate bearing capacity.

Site inspections were carried out on each formation to confirm these findings, as described in detail in the following chapters. Plate testing to confirm stiffness and estimate strength was not required on the natural formation given the visually evident strength and stiffness of bedrock which typically required rock breaking to excavate. Plate testing was required however on the 6N engineering upfill at T4, results are included within Appendix C to confirm adequate compaction.

3. FORMATION INSPECTIONS

3.1 General Details

The formation strata of each proposed turbine base, was inspected by a suitably qualified Engineer from Ionic Consulting between the 20th of May 2019 and the 17th of June 2019.

Each turbine formation excavation was logged and photographed in accordance with BS5930, IS EN 1997 (Eurocode 7) and Site Investigation Steering Group (SISG) recommendations published in the "Specification of Ground Investigations" published by the ICE (1993).

Full details and photographs are given in the formation inspection log sheets provided in Appendix A of this report.

3.2 Ground Conditions

The ground conditions encountered during the inspections generally confirmed the findings of earlier geotechnical investigations. The following ground conditions were encountered during trial pitting and borehole drilling and broadly confirmed during the turbine formation inspections:

3.2.1 Superficial Geology

Within the trial pits and boreholes at N117-2400 gravity base locations the superficial deposits consisted generally of shallow peat with rootlets on weathered bedrock, with the exception of T4 which had fine to coarse silty sandy gravel to a depth of up to 6.4m.

3.2.2 Solid Geology

According to the GSI National Generalised Bedrock Map, and the 100k Solid Geology Map, the substation site is predominantly underlain by purple siltstone and fine sandstone of the Bird Hill Formation.

Weathered or intact solid bedrock was generally encountered during excavation and/or drilling within the minimum required founding depth for the turbine foundation of 1.8m below original ground level at 4 of the 5 bases. The formation depth at T4 was significantly deeper at approximately 6m, built-up with 6N engineering fill to the required foundation level. Also notable was a significant 4m drop-off in bedrock level at the western edge of the T8 formation which required a wider excvavation and 4m of leanmix concrete locally to provide the equivalent strength and stiffness across the entire foundation footprint area.

3.2.3 Groundwater

Groundwater was encountered at a shallow level during excavation and borehole drilling, therefore buoyant bases were adopted for all turbine locations. Note that as Nordex N117 tower bottom sections are set at +1.1m relative to original ground level the design water level is set 917mm below the top of ballast level at original ground level. Technically therefore a partially buoyant gravity base is provided as the upper ballast which is above original ground level is not considered under a submerged scenario.

3.3 Summary

In principal the following table summarises the geology of the formation strata encountered during the formation inspections.

WTG	Formation Strata Description
ті	SILTSTONE bedrock
Т3	SILTSTONE bedrock
Τ4	SILTSTONE bedrock
Т5	SILTSTONE bedrock
Т8	SILTSTONE bedrock

Table 3.1 Summary of formation level conditions – N117-2400 formations

4. IN SITU TESTING

Based upon the conditions encountered detailed in-situ tests were not required on the excavated formations. Generally plate testing would be carried out to validate and quantify the findings of the geotechnical testing which in this case included trial holes and borehole drilling, however it was considered of limited value as the formations were on intact bedrock where no displacements would occur. Similarly due to direct leanmix concrete blinding on bedrock there was no 6N engineering upfill required apart from T4 and therefore plate testing in layers to confirm compaction was only carried out at T4; results are provided in Appendix C.

By inspection the strength of each of the turbine formations on siltstone bedrock was well in excess of the required minimum bearing capacity.

Similarly the stiffness of the underlying siltstone bedrock is well above the required minimum stiffness and the static rotational stiffness ($K_{\Phi stat}$) and dynamic rotational stiffness ($K_{\Phi dyn}$) is well in excess of the minimum required stiffness of 22,500MNm/rad and 90,000MNm/rad respectively.

The values shown in *Table 4.1* below indicate the estimated rotational stiffness on siltstone bedrock based on published lower bound values for elastic modulus of siltstone 3000MPa, but reduced to 500MPa to account for the 3m of 6N engineering fill below the T4 foundation.

Foundation Type	Diameter	Estimated Elastic Modulus	Estimated Rotational Stiffness	Min Required Rotational Stiffness (Nordex document)
	(m)	(MN/m2)	(MNm/rad)	(MNm/rad)
Nordex N117 91m HH IEC2a	20.8	500	940,300	90,000

Table 4.2 Summary of Rotational Stiffness – NII7-2400 formations

5. SUMMARY

Based on the formation inspections it is concluded that the turbine foundations are founded on strata capable of meeting the performance criteria specified in the turbine foundation calculations for Nordex N117 91mHH 2.4MW Class IEC3a turbines.

The bearing capacity and rotational stiffness requirements have been satisfied.

Certificates associated with the formation inspection are included in Appendix B of this report.

APPENDICES

APPENDIX A – Formation Inspection Log Sheets

FORMATION INSPECTION SHEET

	А		В		с		D
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT
0.30 - 2.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 2.20	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 1.30	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 1.70	Strong thinly laminated purple fine and medium grained SILTSTONE
shallow concrete infill NW		Engineer Date	C Ó Dubhthaigh 05/06/2019		Some surface water ponding at formation level and within recessed central area for slab downstand.		
		Tests	No Plate Bearing Tests required (solid bedrock)	Water	Drainage temporarily through duct channel and pumping where required prior to placement of		Due to some overbreaking and jagged excavated surface the excess excavation depth was infilled with
D		Conducted Ref	N/A		leanmix blinding.	Notes (cont'd)	available C35/45 concrete from adjacent completed concrete pour. Up to 7m ³ was placed locally on north west and east to depths up to 250mm. Direct
formation level (206.3mO		Easting	120871		22m diameter circle with steep rockface up to 2.5m		blinding with minimum 100mm of C16/20 leanmix to be carried out above this and above the remaining bedrock across the entire footprint area.
Figure 1:		Northing	70057	Notes	on north and east. Plate tests not required due to formation on solid bedrock.		
rigure I :	North Direction, Ramp and Plate Load Test Locations	Level	206.3mOD				

Ionic Consulting The Hyde Building				
The Park Carrickmines Dublin 18 Ireland	Project	CLEANRATH WIND FARM	Base	ті

FORMATION PHOTOGRAPHS

Report Ref CNRH r027.3

View of entire formation area from hardstanding

View of formation area from above facing SW

Bedrock profile following rock breaking	Up to 250mm depth of concrete placed in SW

FORMATION INSPECTION SHEET

	A		В		с		D
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT
0.20 - 1.20	Strong thinly laminated purple fine grained SILTSTONE	0.20 - 2.30	Strong thinly laminated purple fine grained SILTSTONE	0.20 - 2.20	Strong thinly laminated purple fine grained SILTSTONE	0.20 - 1.50	Strong thinly laminated purple fine grained SILTSTONE
	ΑΝ	Engineer	C Ó Dubhthaigh				
		Date	05/06/2019		Excavation entirely dry at time of excavation.		
		Tests	No Plate Bearing Tests required (solid bedrock)	Water	Minimal overburden consisting of 0.2m of peaty topsoil across the wider area. No perimeter drain		Minimal crossfall across the footprint area, low point to north west where bedrock levels are
D	В	Conducted	N/A		required for construction stage.	Notes	approximately 1m lower. Direct blinding with minimum 100mm C16/20 leanmix will be carried out
		Ref	N/A			(cont'd)	across the entire footprint area to provide the
formation 210.0mOD		Easting	121213		22m diameter circle with steep rockface up to 2.1m		blinding surface for foundation construction.
		Northing	69913	Notes	on south and 2.0m on east. Plate tests not required due to formation on solid bedrock.		
Figure I :	North Direction, Ramp and Plate Load Test Locations	Level	210.0mOD				

Ionic Consulting The Hyde Building				
The Park Carrickmines Dublin 18	Project	CLEANRATH WIND FARM	Base	Т3
Ireland				

FORMATION PHOTOGRAPHS

Report Ref CNRH r027.3

Bedrock profile after rock breaking

Bedrock profile after rock breaking

Overview of entire formation area	Formation area relative to hardstanding

FORMATION INSPECTION SHEET

	Α		В		C		D
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 1.40	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 1.20	Dark brown fibrous PEAT
1.40 - 6.10	Fine to coarse brown silty sandy siltstone and sandstone GRAVEL	0.30 - 5.90	Fine to coarse brown silty sandy siltstone and sandstone GRAVEL	0.30 - 5.90	Fine to coarse brown silty sandy siltstone and sandstone GRAVEL	1.20 - 6.40	Fine to coarse brown silty sandy siltstone and sandstone GRAVEL
6.10 - 6.20	Strong thinly laminated purple fine and medium grained SILTSTONE	5.90 - 6.00	Strong thinly laminated purple fine and medium grained SILTSTONE	5.90 - 6.00	Strong thinly laminated purple fine and medium grained SILTSTONE	6.40 -	Strong thinly laminated purple fine and medium grained SILTSTONE
2 lower ch approx 0.4 deeper	to 0.8m A N average formation level at 184.2mOD B	Engineer Date Tests Conducted	C Ó Dubhthaigh 17/06/2019 No Plate Bearing Tests required (solid bedrock) N/A	Water	A sump and 150mm pump was set up in the west of the formation area. Some pooling of water remained locally within an inner area towards the NW of the formation area - this was pumped out with an extended pump back to the nearby sump prior to placement of engineering fill.	Notes	Overburden consisted of saturated silty sandy gravel, crossfall of up to 1.5m from top of gravel, though peat depth significantly deeper on low side. Entire overburden excavated to bedrock due to unsuitability of material for dynamic loading. Average excavation depth of 5.9m. Bedrock level approx 0.4 to 0.8m deeper in two broadly parallel channels
water pooling locally, 150m deep, pumpe before 6N placement	g m d out C	Ref Easting Northing	N/A 121200 69411	Notes	28m diameter circle within deep excavation of up to 6.4m, side slopes battered back to 45°, peat up to 1.4m deep on north and west, significantly reduced peat averaging 0.3m on south and east.	(cont'd)	approx 1.5-2m wide as shown on Fig.1. Due to depth of 6N engineering fill required no leanmix required within channels. No plate testing required on natural bedrock formation, but 7 layers of 6N testing will be required at 0.5m intervals to confirm
Figure I : I	North Direction, Ramp and Plate Load Test Locations	Level	184.2mOD		Bedrock level undulating but relatively horizontal across the entire footprint area.		compaction of engineering fill. Leanmix blinding concrete to be laid across the top 6N fill layer.

Ionic Consulting The Hyde Building The Park Carrickmines	Project	CLEANRATH WIND FARM	Base	Т4
Dublin 18 Ireland	Froject		Dase	

FORMATION PHOTOGRAPHS

Solid bedrock formation

Solid bedrock formation

View looking north west of entire formation area	Sump and pump in west, shallow water pooling locally in foreground prior to pumping

Ionic Consulting The Hyde Building The Park Carrickmines Dublin 18 Ireland	Project	CLEANRATH WIND FARM	Base	Τ4
---	---------	---------------------	------	----

FORMATION INSPECTION SHEET

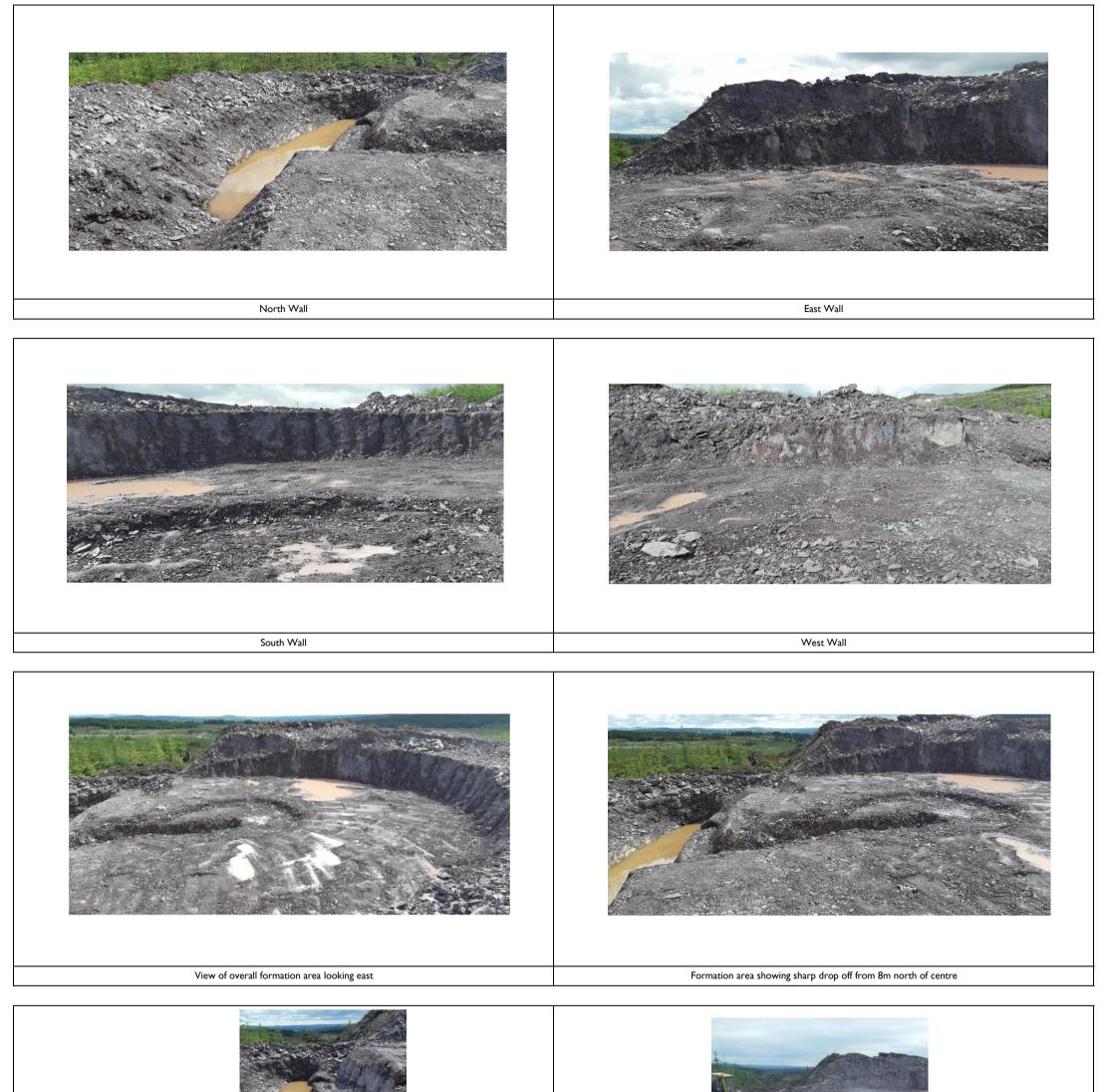
	A		В		C		D
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.50	Dark brown fibrous PEAT	0.00 - 0.50	Dark brown fibrous PEAT	0.00 - 0.50	Dark brown fibrous PEAT	0.00 - 0.50	Dark brown fibrous PEAT
0.50 - 4.10	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 1.40	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 1.50	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 3.40	Strong thinly laminated purple fine and medium grained SILTSTONE
formation at 205.4mOD A N	Engineer Date Tests Conducted Ref	C Ó Dubhthaigh 20/05/2019 No Plate Bearing Tests required (solid bedrock) N/A N/A	Water	Some surface water ponding along northern edge of formation area due to local dip of 0.2m in excavated bedrock level. Natural drainage possible through duct channel excavated to south east. To be drained prior to leanmix placement. Suitable fall to south east for gravity drainage from foundation level.	Notes (cont'd)	Due to bedrock excavation level on the north which was 0.2m below the approved formation blinding level over an area of approximately 20m2, additional dry leanmix will be required to bring the entire footprint area to the required level of 205.4mOD. Once the entire area is brought to the required level, and after placement of the ducts for the power	
Figure I :	North Direction, Ramp and Plate Load Test Locations	Easting Northing Level	120682 69553 205.4mOD	Notes	22m diameter excavated circle suitable for 20.2m diameter foundation. Steep rockface on 2 sides, up to 4m to north. Plate tests not required due to formation on solid bedrock.		cables within the ducting channel to south east, the entire footprint area will be blinded with wet C16/20 leanmix concrete to provide the required blinding surface for construction of the foundation.

Ionic Consulting The Hyde Building The Park Carrickmines Dublin 18	Project	CLEANRATH WIND FARM	Base	Т5
Ireland				

FORMATION PHOTOGRAPHS

FORMATION PHOTOGRAPHS	Report Ref CNRH r027.3
North Wall	East Wall
South Wall	West Wall
View over entire formation area	View of downslope (eastern) side with stockpiled ballast material

View of formation relative to hardstanding level	Excavated duct channel with gravity drainage



FORMATION INSPECTION SHEET

	А		В		С		D
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.40	Dark brown fibrous PEAT	0.00 - 0.40	Dark brown fibrous PEAT	0.00 - 0.40	Dark brown fibrous PEAT	0.00 - 0.40	Dark brown fibrous PEAT
0.40 - 4.10	Clayey sandy gravel	0.40 - 0.80	Weathered siltstone	0.40 - 0.80	Weathered siltstone	0.40 - 0.80	Weathered siltstone
4 10 - 4 30	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 1.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 3.50	Strong thinly laminated purple fine and medium grained SILTSTONE	0 50 - 1 80	Strong thinly laminated purple fine and medium grained SILTSTONE
leanmix, up to	Engineer Date	C Ó Dubhthaigh 07/06/2019		Some surface water ponding locally at formation level in south east following rainfall. Water accummulating within the lower channel on north after deep excavation of overburden at edge of steep fall off in bedrock level. Water to be pumped		Due to a significant level difference up to 4m for the outer 2m of the base sub-formation an excavated radius of 15m was provided to the north to provide the minimum 1:1 leanmix concrete build-up for the foundation radius of 10.1m. From R13.8m the	
	north edge	Tests No Plate Bearing Tests required (solid bedrock)	Water				
D		Conducted Ref	N/A N/A		prior to placement of dry leanmix within lower tier.	Notes (cont'd)	bedrock rises again. The bedrock at R8.0m was squared up vertically to avoid outward lateral forces being induced. The lower tier excavated effectively as
upper tier 218.4mOI		Easting	120493		Minimum 10.5m radius formation area provided on south, east and west with steep rockface up to		a channel as from R13.8m to R15.0m the bedrock level rises, which also provides additional lateral
		Northing	69178	Notes	3.5m on south. Steep crossfall from high point on south, sudden and very steep level drop at 8m from		support to the leanmix infill. Direct blinding on bedrock across 5/6th of the footprint area, remaining
Figure I : I	North Direction, Ramp and Plate Load Test Locations	Level	218.4mOD		centre of turbine on the north. Lower channel excavated by 4m to bedrock.		area to north infilled to same level with leanmix concrete.

Dublin 18	CLEANRATH WIND FARM	Base	Т8
Ireland			

FORMATION PHOTOGRAPHS

Lower channel before pumping, squared rock profile (RHS), bedrock rising to extreme north (LHS)	Initial placement of dry leanmix to lower channel

APPENDIX B – Formation Approval Certificates

FORMATION APPROVAL

Project :	Cleanrath Wind Farm				
Turbine		T1			
Reference:	CNRH r027.3 Appendix B	Date :	5 June 2019		
Contractor/Client :	Mid Cork Electrical Limited				
Formation Report Reference	CNRH r027.3 RevB				

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhain

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building • The Park • Carrickmines • Dublin 18 • Ireland

FORMATION APPROVAL

Project :	Cleanrath Wind Farm				
Turbine		Т3			
Reference:	CNRH r027.3 Appendix B	Date :	5 June 2019		
Contractor/Client :	Mid Cork E	lectrical Limited			
Formation Report Reference	CNRH r027.3 RevB				

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhain

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building • The Park • Carrickmines • Dublin 18 • Ireland

FORMATION APPROVAL

Project :	Cleanrath Wind Farm				
Turbine		T4			
Reference:	CNRH r027.3 Appendix B	Date :	17 June 2019		
Contractor/Client :	Mid Cork Electrical Limited				
Formation Report Reference	CNRH r027.3 RevB				

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhain

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building • The Park • Carrickmines • Dublin 18 • Ireland

FORMATION APPROVAL

Project :	Cleanrath Wind Farm				
Turbine		T5			
Reference:	CNRH r027.3 Appendix B	Date :	20 May 2019		
Contractor/Client :	Mid Cork E	lectrical Limited			
Formation Report Reference	CNRH	r027.3 RevB			

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building • The Park • Carrickmines • Dublin 18 • Ireland

FORMATION APPROVAL

Project :	Cleanrath Wind Farm				
Turbine		T8			
Reference:	CNRH r027.3 Appendix B	Date :	11 June 2019		
Contractor/Client :	Mid Cork E	lectrical Limited			
Formation Report Reference	CNRH	r027.3 RevB			

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building • The Park • Carrickmines • Dublin 18 • Ireland

APPENDIX C – Plate Bearing Tests Results (T4 upfill)

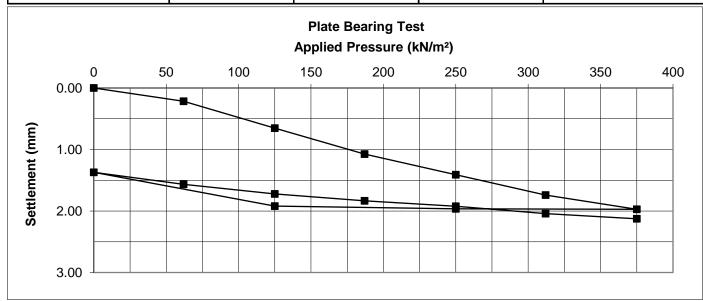

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +0.5m SE	Plate Diameter:	450mm
Test Date :	20/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.11	0.34	0.20	0.22
125	0.46	0.96	0.54	0.65
187	0.82	1.48	0.92	1.07
250	1.12	1.88	1.23	1.41
312	1.41	2.27	1.54	1.74
375	1.62	2.54	1.76	1.97
250	1.64	2.49	1.76	1.96
125	1.64	2.36	1.76	1.92
0	1.22	1.69	1.20	1.37
62	1.29	2.03	1.38	1.57
125	1.42	2.22	1.53	1.72
187	1.51	2.36	1.63	1.83
250	1.58	2.48	1.71	1.92
312	1.66	2.60	1.87	2.04
375	1.76	2.76	1.86	2.13

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 122154 kN/m²/m 61 MN/m² 56 MN/m² 162 MN/m² 2.9 40 %

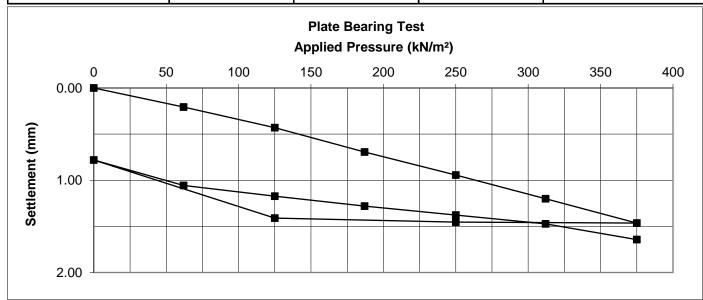

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +1.0m W	Plate Diameter:	450mm
Test Date :	20/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.08	0.27	0.27	0.21
125	0.23	0.55	0.51	0.43
187	0.43	0.87	0.78	0.69
250	0.63	1.18	1.02	0.94
312	0.81	1.52	1.27	1.20
375	1.01	1.85	1.53	1.46
250	1.02	1.81	1.53	1.45
125	1.02	1.68	1.53	1.41
0	0.50	0.99	0.85	0.78
62	0.66	1.34	1.17	1.06
125	0.75	1.48	1.29	1.17
187	0.83	1.62	1.39	1.28
250	0.89	1.75	1.49	1.38
312	0.96	1.88	1.58	1.47
375	1.09	2.09	1.75	1.64

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 164727 kN/m²/m 82 MN/m² 85 MN/m² 163 MN/m² 1.9 67 %

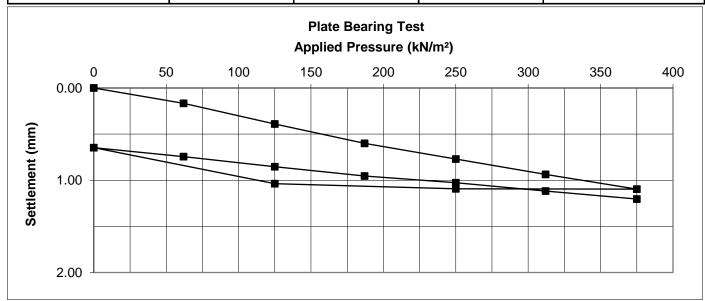

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +1.5m NW	Plate Diameter:	450mm
Test Date :	20/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.18	0.18	0.14	0.17
125	0.45	0.37	0.35	0.39
187	0.69	0.56	0.55	0.60
250	0.88	0.71	0.72	0.77
312	1.06	0.85	0.90	0.94
375	1.23	0.99	1.07	1.10
250	1.25	0.96	1.07	1.09
125	1.24	0.80	1.07	1.04
0	0.80	0.43	0.71	0.65
62	0.92	0.57	0.74	0.74
125	1.03	0.71	0.82	0.85
187	1.13	0.82	0.91	0.95
250	1.21	0.89	0.98	1.03
312	1.28	0.97	1.10	1.12
375	1.41	1.05	1.15	1.20

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 219802 kN/m²/m 110 MN/m² 109 MN/m² 224 MN/m² 2.0 110 %

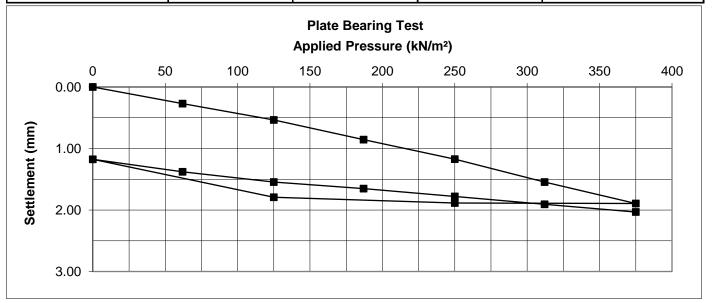

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +2.0m NE	Plate Diameter:	450mm
Test Date :	20/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.25	0.27	0.29	0.27
125	0.54	0.56	0.51	0.54
187	0.88	0.89	0.80	0.86
250	1.16	1.14	1.22	1.17
312	1.48	1.38	1.78	1.55
375	1.77	1.65	2.26	1.89
250	1.79	1.61	2.26	1.89
125	1.78	1.51	2.09	1.79
0	1.18	1.00	1.35	1.18
62	1.32	1.21	1.61	1.38
125	1.47	1.36	1.81	1.55
187	1.56	1.45	1.95	1.65
250	1.66	1.54	2.14	1.78
312	1.76	1.64	2.32	1.91
375	1.86	1.75	2.49	2.03

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 127315 kN/m²/m 64 MN/m² 67 MN/m² 149 MN/m² 2.2 43 %

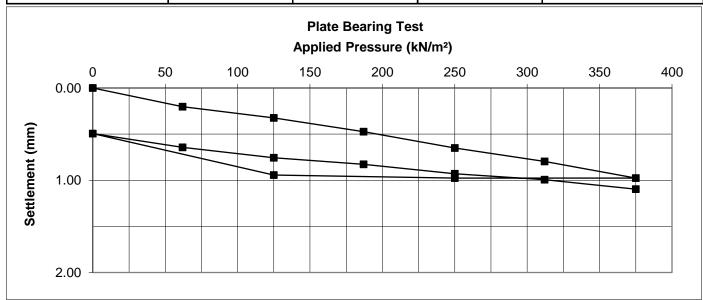

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +2.5m S	Plate Diameter:	450mm
Test Date :	24/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.18	0.27	0.16	0.20
125	0.31	0.39	0.27	0.32
187	0.46	0.55	0.41	0.47
250	0.63	0.74	0.58	0.65
312	0.77	0.92	0.70	0.80
375	0.95	1.11	0.87	0.98
250	0.97	1.09	0.87	0.98
125	0.97	0.99	0.87	0.94
0	0.59	0.45	0.44	0.49
62	0.67	0.72	0.54	0.64
125	0.78	0.85	0.64	0.76
187	0.84	0.94	0.70	0.83
250	0.94	1.05	0.80	0.93
312	1.00	1.12	0.86	0.99
375	1.10	1.24	0.95	1.10

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 246809 kN/m²/m 123 MN/m² 140 MN/m² 215 MN/m² 1.5 135 %

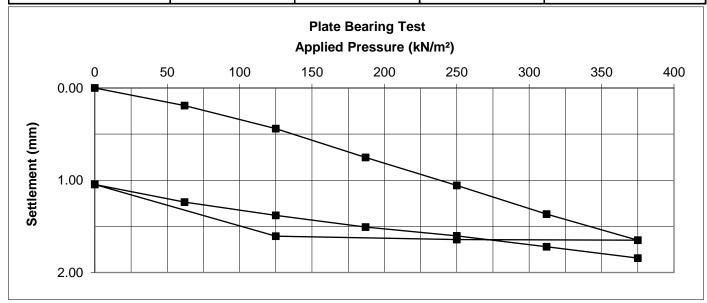

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +3.0m W	Plate Diameter:	450mm
Test Date :	24/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.16	0.27	0.14	0.19
125	0.38	0.57	0.37	0.44
187	0.72	0.89	0.65	0.75
250	1.05	1.18	0.94	1.06
312	1.39	1.48	1.23	1.37
375	1.67	1.74	1.54	1.65
250	1.67	1.72	1.54	1.64
125	1.67	1.62	1.53	1.61
0	1.05	1.09	1.00	1.05
62	1.20	1.35	1.16	1.24
125	1.35	1.49	1.30	1.38
187	1.47	1.62	1.43	1.51
250	1.56	1.72	1.53	1.60
312	1.66	1.84	1.66	1.72
375	1.77	1.98	1.78	1.84

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 146091 kN/m²/m 73 MN/m² 72 MN/m² 161 MN/m² 2.2 54 %

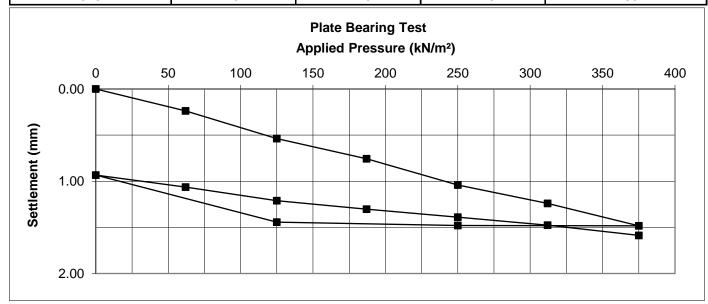

Report Date: Report No: July 2019 CNRH r027

Plate Bearing Test in accordance with EN 1997-2:2007, EN ISO 22476-13 and DIN 18134:2001-09

CBR values derived from empirical relationship in NRA DMRB Volume 7 HD 25-26 Clause 3.6.3

Project:	Cleanrath Wind Farm	Client:	Mid Cork Electrical
Location:	T4 +3.5m Final Layer SE	Plate Diameter:	450mm
Test Date :	24/06/2019	Material:	6N Engineering Fill
Tested By :	S. O'Mahony	Turbine Supplier:	Nordex

Applied Pressure	Dial Gauge A	Dial Gauge B	Dial Gauge C	Average Settlement
[kN/m ²]	[mm]	[mm]	[mm]	[mm]
0	0.00	0.00	0.00	0.00
62	0.24	0.29	0.18	0.24
125	0.65	0.53	0.43	0.54
187	0.94	0.70	0.63	0.76
250	1.30	0.89	0.93	1.04
312	1.54	1.05	1.13	1.24
375	1.80	1.24	1.41	1.48
250	1.80	1.22	1.42	1.48
125	1.80	1.12	1.41	1.44
0	1.34	0.56	0.90	0.93
62	1.44	0.76	0.99	1.06
125	1.59	0.91	1.13	1.21
187	1.69	1.01	1.21	1.30
250	1.78	1.10	1.29	1.39
312	1.88	1.18	1.37	1.48
375	2.01	1.26	1.49	1.59

Results:

Modulus of Subgrade Reaction, Initial Load (k1) = Elastic Modulus (E) = Deformation Modulus, Initial Load (Ev1) = Deformation Modulus, Reload (Ev2) = Ev2/Ev1 (Load / Reload) Ratio = Estimated CBR value = 162506 kN/m²/m 81 MN/m² 83 MN/m² 195 MN/m² 2.3 65 %

APPENDIX D – Nordex N117-2400 loading & stiffness document

Lastspezifikation / Load Specification

Fundament / Foundation

N117/2400 R91opt IEC3a/DIBt2

Rotorblatt / Rotor blades: NR58.5 Klimatische Bedingungen / *Climate conditions*: NCV & CCV

Dokumentnummer / Document number K0822_066224_IN Revision / Revision Ersteller / Created: 01 A. E. Dang/MTF Datum / Date 07.04.2016 Verantwortliche Abteilung / Prüfer / Checked: Department responsible A. Schröder/MTF MTE / MTF Klassifikation / Classification Nordex intern (IP) Status / Status Freigabe / Released: H.Timm/MTF AST 9994 Ersatz für Revision / Replaces Revision 00 Dokument wird elektronisch verteilt. Original mit Unterschriften bei SCE / SDQ Document published in electronic form. Original at SCE / SDQ.

> (c) Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg All rights reserved. Observe protection notice ISO 16016.

> > Seite / Page: 1/7

ÄNDERUNGSINDEX / REVISION INDEX

Änderung / <i>Revision</i>	Datum / Date	Bearbeiter / Author	Modifikation (Sektion) / Modification (Section)	AST
Rev.01	07.04.2016		Korrektur Markov-Matrizen/ revision of Markov-Matrices, Ergänzungen Kapitel 2.1.2	9994
Rev.00	02.03.2015	A.E. Dang	Erstellt / Created	9994

INHALTSVERZEICHNIS / TABLE OF CONTENT

ÄNDI	ERUNSINDEX / REVISION INDEX	2
INHA	LTSVERZEICHNIS / TABLE OF CONTENT	2
1	ALLGEMEINSES / GENERAL	3
1.1	Gültigkeitsbereich / Scope	3
1.2	Mitgeltende Dokumente / References	3
2	LASTEN / LOADS	4
2.1	Technische Basisdaten / Parameters	4
2.1.1	Bedingungen für Erdbeben / Earthquake conditions	4
2.1.2	Klimatische Bedingungen / Climate conditions	4
2.2	Zusammenstellung der Lasten / Summary of Loads	5
2.2.1	Extremlasten / Extreme Loads	5
2.2.3	Betriebslasten / Fatigue Loads	7
3	TURMANBINDUNG / CONNECTION TO THE TOWER	7

1. ALLGEMEINES / GENERAL

1.1 Gültigkeitsbereich / Scope

Diese Lastspezifikation stellt die Basisinformation für die Bemessung von Fundamenten für folgende Windenergieanlage der Firma Nordex dar. Darin sind die technischen Basisdaten sowie die Bemessungslasten für die Klimatischen Bedingungen NCV & CCV enthalten.

This specification serves as input information for the design of foundations for the following Nordex wind turbine. Therefore it defines its main parameters and the design loads for the different climate conditions NCV & CCV.

Typ / Type : N117/2400 Nabenhöhe / Hub height : 91m Turm / Tower : R91opt Windklasse / Wind class : IEC3a/DIBt2 Rotorblätter / Rotor blades : NR58.5

1.2 Referenzen / References

Dokumentennr., Revision, Ausgabe / Document Number, Rev. / Edition	Bezeichnung / Description				
	Nordex Dokumente / Nordex Specifications				
K0817_031613_DE_R00	Lastbericht_N117_R91MT_NR585_DIBt2				
K0817_031786_DE_R00	Lastbericht_N117_R91MT_NR585_IEC3a				
K0817_031788_DE_R00	Lastbericht_CCV_N117_R91MT_NR585_IEC3A				
K0802_055079_DE	Bemessung Stahlrohrturm N117 R91 opt TiT				
K0802_055131_DE	Bemessung Stahlrohrturm N117 R91 opt TaT				
	Normen / Standards				
GL IV-1:Edition 2010	Guideline for the certification of wind turbines. Hamburg : Germanischer Lloyd WindEnergie, 2010				
EN 1998-1:2010	Eurocode 8 - Design of structures for earthquake resistance Part 1: General rules, Seismic action and rules for buildings				
IEC 61400-1 (Ed.3)	Windturbine generator systems. Part 1: Safety requirements				
DIBt RiLi 2012-10	DIBt Richtlinie für Windenergieanlagen - Einwirkungen und Standsicherheitsnachweise für Turm und Gründung				

2 LASTEN / LOADS

2.1 Technische Basisdaten / Parameters

$f_0 [Hz] =$	0.276	1. Biegeeigenfrequenz / First eigenfreqency in bending
$k_{\phi,dyn} \left[MNm/rad \right] =$	110000	berücksichtigte Bodendrehfeder / respective rotating spring rate
$k_{\phi,stat} \; [MNm/rad] =$	27500	statische Bodendrehfeder / static rotating spring rate
Schiefstellung Turm [mm/m] /		
Inclination tower [mm/m] =	10.1	
h _{TB} [m] =	1.1	Höhe Unterkante Turmfuß über Geländeoberkante / Position of tower bottom respective to top ground surface
m _{tower} [t] =	ca. 186	Turmmasse inkl. Einbauten / Mass of tower incl. Tower interiors
$m_{nacelle} [t] =$	ca. 147	Gondelmasse (inkl. Rotorblätter) / Total mass of nacelle incl. blades

2.1.1 Bedingungen für Erdbeben / Earthquake conditions

Norm / Standard : EN 1998-1:2010

Bodenklasse / Soil class: A, B, C, D, E

a [m/s²] =	0.3*g	(DIBt)	Bodenbeschleunigung /	peak ground acceleration (PGA)
------------	-------	--------	-----------------------	--------------------------------

- **0.3*g** (IEC) Bodenbeschleunigung / peak ground acceleration (PGA)
- a $[m/s^2] = 0.3^*g$ (IEC) 2.1.2 Klimatische Bedingungen / *Climate conditions*
 - Normal climate version (englisch). "Normal climate" bedeutet volle Produktion bis -10 °C und NCV : Stillstand bzw. Trudeln zwischen -10 °C und -20 °C./ "Normal climate" is defined as full production down to -10 °C and/or idling between -10 °C and -20 °C.
 - Cold climate version (englisch). "Cold climate" bedeutet volle Produktion bis -10 °C, reduzierte
 - CCV : Produktion zwischen -10°C und -30°C und Stillstand bzw. Trudeln zwischen -30°C und -40°C./ "Cold climate" is defined as reduced production between -10°C and -30°C and standstill or idling between -30°C and -40°C.

Die jeweils maßgebenden Lasten aus NCV und CCV Lasten sind bei der Fundamentauslegung zu berücksichtigen./ The decisive load cases from NCV and CCV loads have to be considered for the foundation design.

2.2 Zusammenfassung der Lasten / Summary of Loads

2.2.1 Extremlasten / Extreme Loads

System	TB Definition:	Turmfuß / To	wer Bottom									
	Extremlasten (absolute Maxima) inkl. Erdbebenlastfälle inkl. Sicherheit / Extreme Loads (absolute maxima) incl. earthquake + synchrone components (including safety-factors)											
LC	LC-Def.	FXTB	MXTB	FYZTB	MYZTB	∆Mres	M _{res}	γ _f				
		kN	kNm	kN	kNm	[kNm]	[kNm]	-				
8.1	08010000_ZY_D_0_17_01_(N117_F	5560	759	88	6325	2783 *	9108	1.65				
2.1	02010204_ZY_A_20_10_(50)_(N117	4835	-5715	297	27963	2783 *	30746	1.35				
2.2	02020204_ZZ_A_20_10_(60)_(N117	3956	-837	898	75189	2783 *	77971	1.10				
1.5	01050000_ZY_B_0_10_(N117_R91	4737	531	828	75398	2783 *	78180	1.35				

	mlasten (absolute Maxima) inkl <i>me Loads (absolute maxima) ii</i>				nts (excl. safe	ty-factors)		
LC	LC-Def.	FXTB	МХТВ	FYZTB	MYZTB	∆Mres	M _{res}	γ _f
		kN	kNm	kN	kNm	[kNm]	[kNm]	-
5.2	05020000_ZZ_B_08_01_(60)_(N117	4625	-3	292	23939	2783 *	26722	1.00
2.2	02020204_ZZ_B_10_07_(60)_(N117	3560	-5042	92	7976	2783 *	10759	1.00
5.2	05020000_ZZ_B_08_13_(60)_(N117	3610	38	885	47482	2783 *	50264	1.00
2.2	02020204_ZZ_A_20_10_(60)_(N117	3597	-788	814	68427	2783 *	71209	1.00

	Extremlasten (absolute Maxima) exkl. Erdbebenlastfälle inkl. Sicherheit / Extreme Loads (absolute maxima) excl. earthquake + synchrone components (incl. safety-factors)									
LC	LC-Def.	FXTB kN	MXTB kNm	FYZTB kN	MYZTB kNm	∆Mres [kNm]	M _{res} [kNm]	γ _f		
8.1	08010000_ZY_D_0_17_01_(N117_F	5560	759	88	6325	2783 *	9108	1.65		
2.1	02010204_ZY_A_20_10_(50)_(N117	4835	-5715	297	27963	2783 *	30746	1.35		
2.2	02020204_ZZ_A_20_10_(60)_(N117	3956	-837	898	75189	2783 *	77971	1.10		
1.5	01050000_ZY_B_0_10_(N117_R91I	4737	531	828	75398	2783 *	78180	1.35		

	Extremlasten (absolute Maxima) exkl. Erdbebenlastfälle exkl. Sicherheit / Extreme Loads (absolute maxima) excl. earthquake + synchrone components (excl. safety-factors)									
LC	LC-Def.	FXTB	MXTB	FYZTB	MYZTB	∆Mres	M _{res}	γ _f		
		kN	kNm	kN	kNm	[kNm]	[kNm]	-		
6.5	06050000_ZY_A_0_39_(N117_R911	4625	-3	292	23939	2783 *	26722	1.00		
2.2	02020204_ZY_B_10_11_(50)_(N117	3560	-5042	92	7976	2783 *	10759	1.00		
2.2	02020204_ZZ_A_20_10_(60)_(N117	3610	38	885	47482	2783 *	50264	1.00		
2.2	02020204_ZZ_A_20_10_(60)_(N117	3597	-788	814	68427	2783 *	71209	1.00		

*) maximaler Δ Mres- Wert aus Vorauslegung N117 R91opt IEC3a/DIBt2 / max Δ Mres value from preliminary design N117 R91opt IEC3a/DIBt2 K0802_055079_DE und K0802_055131_DE

Ständige Laste	en (klaffende	Fuge) für eine	Überschreitenswahrscheinlichkeit						
von 1750 Stun	den in 20 Jah	ren nach DIB	t- Richtlinie 2012-10 Kap. 12.2.3.2						
Permanent Loads (gaping joint) for an exceedance probability of 1750 hours									
in 20 years ac	c. to DIBt 201	2-10, chapter	12.2.3.2						
FXTB	FYZTB	MXTB	MresTB						

	FXTB	FYZTB	MXTB	MresTB		
	[kN]	[kN]	[kNm]	[kNm]		
	3780	424	1664	39647		

2.2 Zusammenfassung der Lasten / Summary of Loads

2.2.1 Extremlasten CCV / Extreme Loads CCV

	mlasten (absolute Maxima) ink me Loads (absolute maxima) i				nts (including	g safety-fac	tors)	
LC	LC-Def.	FXTB	МХТВ	FYZTB	MYZTB	∆Mres	M _{res}	γ _f
		kN	kNm	kN	kNm	[kNm]	[kNm]	-
7.1	N_CCV_07010000_ZY_F_30_01	5046	-2062	200	11134	2783 *	13917	1.10
6.2	N_CCV_06020000_ZY_T_37_01	3914	4701	479	39622	2783 *	42405	1.10
6.2	N_CCV_06020000_ZY_A_37_01	3891	-2888	732	61910	2783 *	64693	1.10
6.2	N_CCV_06020000_ZY_A_37_01	3888	-2907	729	62058	2783 *	64841	1.10

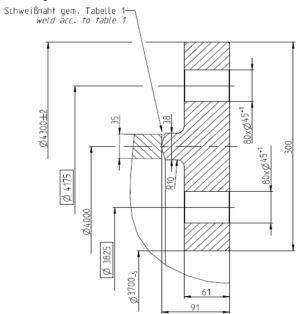
Extre	Extreme Loads (absolute maxima) incl. earthquake + synchrone components (excl. safety-factors)									
LC	LC-Def.	FXTB	MXTB	FYZTB	MYZTB	∆Mres	M _{res}	γ _f		
		kN	kNm	kN	kNm	[kNm]	[kNm]	-		
7.1	N_CCV_07010000_ZY_F_30_01	3738	-1527	148	8248	2783 *	11030	1.00		
6.2	N_CCV_06020000_ZY_T_37_01	3558	4274	435	36020	2783 *	38803	1.00		
6.2	N_CCV_06020000_ZY_A_37_01	3537	-2625	666	56282	2783 *	59064	1.00		
6.2	N_CCV_06020000_ZY_A_37_01	3535	-2643	663	56417	2783 *	59199	1.00		

Extre	me Loads (absolute maxima) e	excl. earthqua	ake + synchr	one compone	ents (incl. sat	fety-factors)	
LC	LC-Def.	FXTB kN	MXTB kNm	FYZTB kN	MYZTB kNm	∆Mres [kNm]	M _{res} [kNm]	γ _f
7.1	N_CCV_07010000_ZY_F_30_01	5046	-2062	200	11134	2783 *	13917	1.10
6.2	N_CCV_06020000_ZY_T_37_01	3914	4701	479	39622	2783 *	42405	1.10
6.2	N_CCV_06020000_ZY_A_37_01	3891	-2888	732	61910	2783 *	64693	1.10
6.2	N_CCV_06020000_ZY_A_37_01	3888	-2907	729	62058	2783 *	64841	1.10

	Extremlasten (absolute Maxima) exkl. Erdbebenlastfälle exkl. Sicherheit / Extreme Loads (absolute maxima) excl. earthquake + synchrone components (excl. safety-factors)									
LC	LC-Def.	FXTB	MXTB	FYZTB	MYZTB	∆Mres	M _{res}	γ _f		
		kN	kNm	kN	kNm	[kNm]	[kNm]	-		
7.1	N_CCV_07010000_ZY_F_30_01	3738	-1527	148	8248	2783 *	11030	1.00		
6.2	N_CCV_06020000_ZY_T_37_01	3558	4274	435	36020	2783 *	38803	1.00		
6.2	N_CCV_06020000_ZY_A_37_01	3537	-2625	666	56282	2783 *	59064	1.00		
6.2	N_CCV_06020000_ZY_A_37_01	3535	-2643	663	56417	2783 *	59199	1.00		

*) maximaler ΔMres- Wert aus Vorauslegung N117 R91opt IEC3a/DIBt2 / max ΔMres value from preliminary design N117 R91opt IEC3a/DIBt2 K0802_055079_DE und K0802_055131_DE

Ständige Lasten (klaffende Fuge) für eine Überschreitenswahrscheinlichkeit von 1750 Stunden in 20 Jahren nach DIBt- Richtlinie 2012-10 Kap. 12.2.3.2 <i>Permanent Loads (gaping joint) for an exceedance probability of 1750 hours in 20 years acc. to DIBt 2012-10, chapter 12.2.3.2</i>						
FXTB	FYZTB	MXTB	MresTB			
[kN]	[kN]	[kNm]	[kNm]			
3780	424	1664	39647			


2.2.3 Betriebslasten Turmfuß / Fatigue Loads Tower bottom

Betriebslasten Schädigungsäquivalente ESK / Fatigue Loads Damage Equivalent Load Spectrum								
N N	m	FXTB	FZTB	мхтв	МҮТВ			
Lastspiele Cycles		kN	kN	kNm	kNm			
1.00E+07	3	109	338	3900	22400			
1.00E+07	4	86	300	3367	21661			
1.00E+07	5	78	294	3235	22105			
1.00E+07	6	75	298	3250	22923			
1.00E+07	7	75	306	3325	23913			
1.00E+07	8	75	317	3425	25027			
1.00E+07	9	77	330	3534	26250			
1.00E+07	10	78	345	3646	27563			
1.00E+07	11	80	361	3767	28929			
1.00E+07	12	82	377	3898	30304			
gamma-f -	FAT	1.0	1.0	1.0	1.0			
Mittellast <i>Mean load</i>		3537	254	30	21944			

Die RFCs und Markov-Matrizen werden bei Bedarf als Excel-Datei beigefügt. / The rain flow counts (RFCs) and Markov-matrices will be attached as excel-files if required.

3. TURMANBINDUNG / CONNECTION TO THE TOWER

Voraussichtliche Anbindung an den Turm

CLEANRATH WIND FARM

Formation Approval Report T6, T7, T9, T10

NII7-3600 IEC2a Foundations

Ionic Consulting Ltd The Hyde Building The Park, Carrickmines Dublin 18, Ireland

T: +353 | 845 503| F: +353 | 845 56|2 www.ionicconsulting.ie

Document History

Doc Name	Rev	Details	Author	Checked	Approved
CNRH r027.2	А	Initial Issue	Cormac Ó Dubhthaigh	John Shanahan	Cormac Ó Dubhthaigh
CNRH r027.2	В	Turbine numbering modified	Niamh Moore	Cormac Ó Dubhthaigh	Cormac Ó Dubhthaigh

CNRH r027.2 Cleanrath N117-3600 IEC2a Formation Approval Report RevB

Confidentiality

This document contains proprietary and confidential information, which is provided on a commercial in confidence basis. It may not be reproduced or provided in any manner to any third party without the consent of lonic Consulting.

© Copyright Ionic Consulting

This work and the information contained in it are the copyright of lonic Consulting. No part of this document may be reprinted or reproduced without the consent of lonic Consulting.

Addressee

The contents of this report are for the exclusive use of the Client. If other parties choose to rely on the contents of this report they do so at their own risk.

Disclaimer

lonic Consulting have performed the consultancy services as described in this report in accordance with a standard of best practice available within the industry. Ionic Consulting do not make any representations or warranty, expressed or otherwise as to the accuracy or completeness of the source data used in this report, and nothing contained herein is, or shall be relied upon, as a promise or representation, whether as to the past or the future in respect of that source data.

This document has been prepared by

Comac of Sullhay

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

This report has been checked by

John Shanahan BE MSc CEng MIEI Senior Civil Engineer Ionic Consulting

This report has been authorised by

Jama J Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

CONTENTS

Ι.	INT	TRODUCTION	5
2.	FO		6
		RMATION INSPECTIONS	
3	.1	General Details	7
3	.2	Ground Conditions	7
3	.3	Summary	
4.	IN	SITU TESTING	9
5.	SU	MMARY	
AP	PEN	DICES	
AP	PEN	DIX A – FORMATION INSPECTION LOG SHEETS	
AP	PEN	DIX B – FORMATION APPROVAL CERTIFICATES	12
AP	PEN	DIX C – NORDEX N117-3600 LOADING & STIFFNESS DOCUMENT	

I. INTRODUCTION

Ionic Consulting was appointed by Mid Cork Electrical Ltd. to carry out formation approval for all wind turbine foundation bases at Cleanrath Wind Farm in Co. Cork. The wind farm comprises 15 no. Nordex turbines, including 6 no. N100 3.3MW 100mHH Class IEC1a turbines, 4 no. N117 91mHH 3.6MW Class IEC2a turbines and 5 no. N117 91mHH 2.4MW Class IEC3a turbines.

This report relates to the 4 N117 3.6MW IEC2a turbines which are numbered T6, T7, T9 and T10.

The N117-3600 turbines are located in the western portion of the eastern cluster at Cleanrath, whereas the remaining N117 turbines are located to the east of that cluster and the N100 turbines are in a separate cluster 2km to the west at Derragh. The project includes the two clusters but is collectively known as Cleanrath Wind Farm.

As part of the site supervision works, lonic assessed the founding formation strata for all gravity bases to ensure it met the required design criteria. This report summarises the ground conditions encountered within each of the turbine foundation excavations and has been prepared with reference also to the Geotechnical Investigation Report CNRH r007.1 undertaken by Ionic Consulting. The inspections undertaken at each formation location included a visual inspection, assessment of levels and widths, photographic recording and in-situ plate bearing testing where required.

lonic previously carried out a detailed design of the turbine foundations based on the Nordex N117 91mHH 3.6MW Class IEC2a wind loading documents and insert arrangements details, coupled with the site investigation data detailed in the aforementioned geotechnical report.

A foundation design report has been produced alongside the foundation calculations covering the structural and geotechnical analysis of the site conditions.

Note that this document has been updated for the purposes of inclusion in a Remedial Environmental Impact Assessment Report for Cleanrath Wind Farm as part of a substitute consent application to An Bord Pleanála. The updates to the document relate only to the turbine numbering where it reverts to the original numbering system used when the project was originally proposed for planning permission.

2. FOUNDATION DESIGN

The initial geotechnical investigations were undertaken by lonic Consulting in April-May 2019, including a site walkover and assessment of earlier site investigation documents from planning stage. The detailed geotechnical investigation consisted of borehole drilling at a total of 7 locations and was carried out between March and April 2019, along with physical and chemical testing of samples taken. Due to ground conditions which include extensive rock outcrop on higher ground a number of turbine locations were selected for borehole drilling thereby providing a representative outline of ground conditions across the site. The chosen turbine locations ensured that boreholes were carried out in each sub-cluster and for each turbine type. The borehole drilling confirmed findings of shallow bedrock at most locations as generally encountered during initial base excavations. The borehole relevant to this report was drilled at turbine T9. The borehole logs and laboratory testing results are provided in the appendices of the Geotechnical Investigation Report (*CNRH r007.1*). The information gathered during the geotechnical investigations assisted the designers in the design of the wind turbine foundations, and at formation approval stage any assumptions on strength and stiffness were confirmed.

Wind loads used in the design of the foundation are detailed within Nordex N117 91mHH 3.6MW Class IEC2a loading document ref: K0822_077548_IN_3_EC05_IN_Fundament-N117-3600-TS91-IEC2a-DIBt3. One standard partially buoyant gravity foundation design was provided for these 4 turbine locations T6, T7, T9 and T10 based upon the ground conditions encountered and the high groundwater table. The level of the buoyant gravity base is set with the underside of tower bottom section at +1.1m relative to original ground level, and the design water level is taken as original ground level which results in a partially submerged scenario for the foundation. The ultimate design bearing resistance was conservatively estimated based on the ground investigation data to be greater than 500kN/m² for the siltstone bedrock at formation level. Given the shallow depth to bedrock at these locations direct blinding on bedrock is proposed with no additional engineering fill material required to bring it to foundation level. The maximum applied bearing pressure at ultimate loads ranged from 115 to 142kN/m² for the gravity foundations, all well below the ultimate bearing capacity.

Site inspections were carried out on each formation to confirm these findings, as described in detail in the following chapters. Plate testing to confirm stiffness and estimate strength was not required given the visually evident strength and stiffness of shallow bedrock which required rock breaking to excavate.

3. FORMATION INSPECTIONS

3.1 General Details

The formation strata of each proposed turbine base, was inspected by a suitably qualified Engineer from lonic Consulting between the 9th of April 2019 and the 26th of June 2019.

Each turbine formation excavation was logged and photographed in accordance with BS5930, IS EN 1997 (Eurocode 7) and Site Investigation Steering Group (SISG) recommendations published in the "Specification of Ground Investigations" published by the ICE (1993).

Full details and photographs are given in the formation inspection log sheets provided in Appendix A of this report.

3.2 Ground Conditions

The ground conditions encountered during the inspections generally confirmed the findings of earlier geotechnical investigations. The following ground conditions were encountered during trial pitting and borehole drilling and broadly confirmed during the turbine formation inspections:

3.2.1 Superficial Geology

Within the trial pits and boreholes at N117-3600 gravity base locations the superficial deposits consisted generally of shallow peat with rootlets ranging in depth from 0.2m to 0.6m.

3.2.2 Solid Geology

According to the GSI National Generalised Bedrock Map, and the 100k Solid Geology Map, the substation site is predominantly underlain by purple siltstone and fine sandstone of the Bird Hill Formation

Weathered or intact solid bedrock was generally encountered during excavation and drilling within the minimum required founding depth for the turbine foundation of 1.8m below original ground level at each of the 4 bases. Formation strata at T6, T7, T9 and T10 were therefore generally on weathered or intact siltstone at 1.8m bgl relative to the centre of the turbine but varying otherwise with the crossfall.

3.2.3 Groundwater

Groundwater was encountered at a shallow level during excavation and borehole drilling, therefore buoyant bases were adopted for all turbine locations. Note that as Nordex N117 tower bottom sections are set at +1.1m relative to original ground level the design water level is set 917mm below the top of ballast level at original ground level. Technically therefore a partially buoyant gravity base is provided as the upper ballast which is above original ground level is not considered under a submerged scenario.

3.3 Summary

In principal the following table summarises the geology of the formation strata encountered during the formation inspections.

WTG	Formation Strata Description
Т6	SILTSTONE bedrock
Т7	SILTSTONE bedrock
Т9	SILTSTONE bedrock
T10	SILTSTONE bedrock

Table 3.1 Summary of formation level conditions – N117-3600 formations

4. IN SITU TESTING

Based upon the conditions encountered detailed in-situ tests were not required on the excavated formations. Generally plate testing would be carried out to validate and quantify the findings of the geotechnical testing which in this case included trial holes and borehole drilling, however it was considered of limited value as the formations were on intact bedrock where no displacements would occur. Similarly due to direct leanmix concrete blinding on bedrock there was no 6N engineering upfill required and therefore no associated plate testing in layers to confirm compaction.

By inspection the strength of each of the turbine formations on siltstone bedrock was well in excess of the required minimum bearing capacity.

Similarly the stiffness of the underlying siltstone bedrock is well above the required minimum stiffness and the static rotational stiffness ($K_{\Phi stat}$) and dynamic rotational stiffness ($K_{\Phi dyn}$) is well in excess of the minimum required stiffness of 22,500MNm/rad and 90,000MNm/rad respectively.

The values shown in *Table 4.1* below indicate the estimated rotational stiffness on siltstone bedrock based on published lower bound values for elastic modulus of siltstone of 3000MPa.

Foundation Type	Diameter	Estimated Elastic Modulus	Estimated Rotational Stiffness	Min Required Rotational Stiffness (Nordex document)	
	(m)	(MN/m2)	(MNm/rad)	(MNm/rad)	
Nordex N117 91m HH IEC2a	21.8	3000	6,495,000	90,000	

Table 4.2 Summary of Rotational Stiffness – NII7-3600 formations

5. SUMMARY

Based on the formation inspections it is concluded that the turbine foundations are founded on strata capable of meeting the performance criteria specified in the turbine foundation calculations for Nordex N117 91mHH 3.6MW Class IEC2a turbines.

The bearing capacity and rotational stiffness requirements have been satisfied.

Certificates associated with the formation inspection are included in Appendix B of this report.

APPENDICES

APPENDIX A – Formation Inspection Log Sheets

FORMATION INSPECTION SHEET

Report Ref CNRH r027.2

	A		В		C		D	
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description	
0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT	0.00 - 0.20	Dark brown fibrous PEAT	
0.20 - 0.50	Weathered siltstone	0.20 - 0.50	Weathered siltstone	0.20 - 0.50	Weathered siltstone	0.20 - 0.50	Weathered siltstone	
0.50 - 2.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 5.00	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 3.10	Strong thinly laminated purple fine and medium grained SILTSTONE	0.50 - 0.70	Strong thinly laminated purple fine and medium grained SILTSTONE	
2 lower ti infilled wi leanmix D lower tier	ith formation at	Engineer Date Tests Conducted Ref	C Ó Dubhthaigh 26/06/2019 No Plate Bearing Tests required (solid bedrock) N/A N/A	Water	Some surface water locally within the lower tiers within angular ridges of rock where all overburden material was excavated. Suitable fall to west for gravity drainage, water displaced or pumped out prior to placement of leanmix.	Notes (cont'd)	Direct blinding on bedrock across 3/4 of the footprint area at a level of 256.8mOD, remaining area to west infilled to same level with dry leanmix concrete in two lower tiers of 255.5mOD and 254.4mOD. Initially dry leanmix brought to the level of the bedrock to the east before wet leanmix laid across the entire footprint area to provide the blinding surface for foundation construction. Leanmix	
, mid (255	(254.4mOD) middle tier (255.5mOD) Figure 1: North Direction, Ramp and Plate Load Test Locations		1 19466 69620 256.8mOD	Notes	Minimum 11.3m radius with steep rockface on east up to 5m. Significant crossfall in excess of 7m across the excavated formation area, therefore two lower tiers introduced with steps of 1.3m and 1.1m below the broader formation level, resulting in a radius up to 13.7m on west.		placed with maximum shoulder slope of 45 degrees, with surrounding quarry run material. Bedrock level on outside edge of lower tier up to 0.4m higher locally providing additional keyed support to leanmix. Plate tests not required due to formation on solid bedrock on east and leanmix infill to west.	

TH TH Ca Du	onic Consulting The Hyde Building The Park Carrickmines Dublin 18 For the second	Project	CLEANRATH WIND FARM	Base	Т6
Ire	reland				

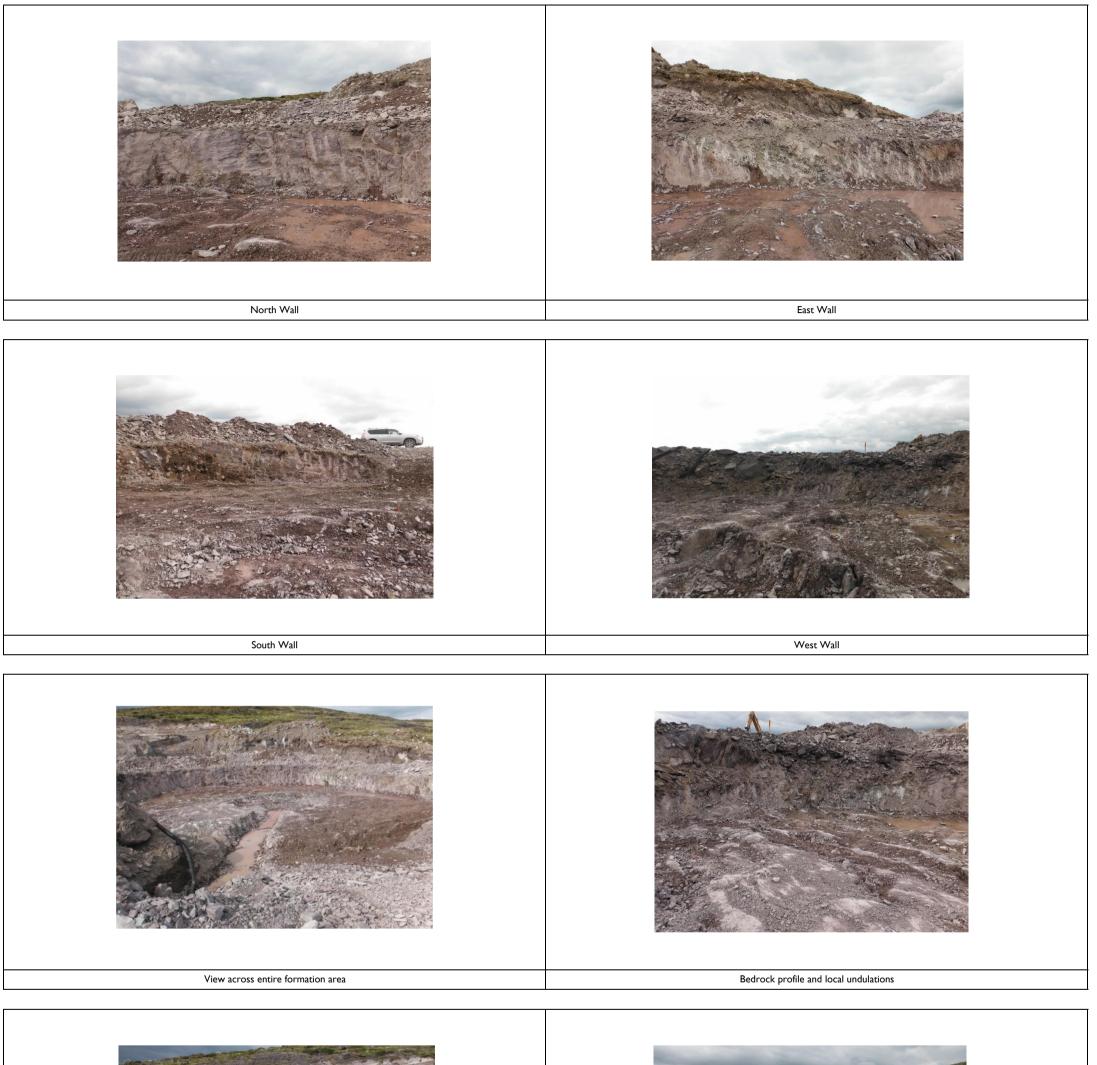
FORMATION PHOTOGRAPHS

Lower tiers to west benched horizontally, higher point locally on west edge of lower tier (RHS in photo)

Placement of leanmix infill to northwest

Placement of leanmix on lower tiers to west	Final blinded formation area being prepared

Ionic Consulting The Hyde Building The Park Carrickmines Dublin 18 Ireland	Project	CLEANRATH WIND FARM	Base	Т6
---	---------	---------------------	------	----


FORMATION INSPECTION SHEET

Report Ref CNRH r027.2

	A		В		с	D	
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.30	Dark brown fibrous PEAT or topsoil	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT
0.30 - 2.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 3.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 2.40	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 1.20	Strong thinly laminated purple fine and medium grained SILTSTONE
formation 251.4mO	D	Engineer Date	C Ó Dubhthaigh 20/05/2019		Minimal surface water ponding locally but more significantly within the duct channel, to be pumped		
		Tests	No Plate Bearing Tests required (solid bedrock)	Water	prior to duct and leanmix placement. Suitable fall to west for gravity drainage from foundation level. All		Channel excavated from centre of base to south to
	B Conducted N/A	bases designed for buoyant conditions to original ground level.	Notes	enable cable ducting to be placed. Channel to be infilled with dry leanmix after placement of ducts. Entire footprint area then to be blinded with leanmix			
	duct channel	Ref Easting	N/A 119610		22.5m diameter circle with steep rockface primarily		concrete to provide the required blinding for foundation construction.
	C		69250	Notes southwest. Plate tests not required due to			
Figure I :	North Direction, Ramp and Plate Load Test Locations	Level	251.4mOD		formation on solid bedrock.		

Ireland	Ionic Consulting The Hyde Building The Park Carrickmines Dublin 18 Inductor	Project	CLEANRATH WIND FARM	Base	Т7
---------	--	---------	---------------------	------	----

FORMATION PHOTOGRAPHS

High bedrock to east	View looking northwest towards T7

FORMATION INSPECTION SHEET

Report Ref CNRH r027.2

	A		В		С		D	
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description	
0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	
0 30 - 2 60	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 2.20	Strong thinly laminated purple fine and medium grained SILTSTONE	0 30 - 0 90	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 2.20	Strong thinly laminated purple fine and medium grained SILTSTONE	
	A N	Engineer	C Ó Dubhthaigh					
	and the second sec		09/04/2019		Significant ponding of water following heavy rainfall. Perimeter drainage channel not excavated through Water bedrock for construction stage. Dewatering required by pumping prior to placement of engineering fill and leanmix.	Notes	23m diameter circle with steep rockface on 3 sides, shallow to south due to bedrock crossfall, low point	
formation at 224.9mOD C		Tests	No Plate Bearing Tests required (solid bedrock)					
		Conducted	N/A				to south. Due to the crossfall and the nature of rock	
		Ref	N/A	Water			breaking additonal leanmix up to 300mm required to bring to required foundation level. Plate tests not	
		Easting	119952				required due to formation on solid bedrock across the entire footprint area.	
		Northing	68981					
Figure I : I	North Direction, Ramp and Plate Load Test Locations	Level	224.9mOD					

Carrickmines Dublin 18 Ireland Project Project CLEANRATH WIND FARM Base T9	Ionic Consulting The Hyde Building The Park				
	Dublin 18	Project	CLEANRATH WIND FARM	Base	Т9

FORMATION PHOTOGRAPHS

Report Ref CNRH r027.2

Formation area viewed from hardstanding

Pooling of water prior to pumping

Bedrock profile indicating extent of rock breaking	Formation on solid bedrock

FORMATION INSPECTION SHEET

Report Ref CNRH r027.2

А			В	с		D	
Depth (m)	Description	Depth	Description	Depth	Description	Depth	Description
0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT	0.00 - 0.80	Dark brown fibrous PEAT	0.00 - 0.30	Dark brown fibrous PEAT
0.30 - 5.20	Strong thinly laminated purple fine and medium grained SILTSTONE	0.30 - 1.80	Strong thinly laminated purple fine and medium grained SILTSTONE	0.80 - 2.20	Loose clayey sandy gravels and cobbles of sandstone and siltstone	0 30 - 1 80	Strong thinly laminated purple fine and medium grained SILTSTONE
				2.20 - 2.40	Strong thinly laminated purple fine and medium grained SILTSTONE		
	A N upper tier 225.9mOD)	Engineer Date	C Ó Dubhthaigh 01/07/2019		Some surface water ponding within the bowl shaped lower tier. Bedrock level rises outward from centre of lower tier thereby trapping the		Direct blinding on bedrock at foundation level across >2/3 of the footprint area, remaining areas generally
		Tests	No Plate Bearing Tests required (solid bedrock)	Water	Water Water broken out in order to retain the structural integrity and support provided to the sub-		to south to be infilled with leanmix concrete to bring to the same level 225.9mOD. A step of up to 1.6m with squared vertical edge provided, however the
		N/A	fe	formation. To be drained by directly pumping prior to infilling with leanmix concrete.	Notes	bedrock level within the lower tier rises radially outwards from the centre of the base, thereby	
Lower bowl shaped tier to south infilled with	shaped tier to south infilled with	Ref Easting	N/A 120288		Minimum 23m diameter circle provided with steep rockface to north of up to 5m. Significant crossfall		effectively resulting in a basin providing additional lateral support on all sides to the leanmix infill. Initially dry leanmix brought to the level of the upper
C line, rock sloping inwards from edge	Northing	68725	Notes	and undulations in bedrock level across the foundation footprint area. Entire area excavated to		bedrock level to north before wet leanmix laid across the entire footprint area to provide the blinding	
Figure I : I	North Direction, Ramp and Plate Load Test Locations	Level	225.9mOD		bedrock, with lower tier provided due to local soft spots in south and central areas.		surface for foundation construction.

Ionic Consulting The Hyde Building				
The Park Carrickmines Dublin 18 Ireland	Project	CLEANRATH WIND FARM	Base	Т10
Ireland				

FORMATION PHOTOGRAPHS

Report Ref CNRH r027.2

<image/> <image/>	<image/> <image/> <image/>
ινοτη γναιι	East vvail
South Wall	West Wall
Significant rock breaking into rock face to north	Rock breaking along north face

Overall view indicating bedrock throughout	Final clearing out of loose rock prior to leanmix infill of low points to south

APPENDIX B – Formation Approval Certificates

FORMATION APPROVAL

Project :	Cleanrath Wind Farm						
Turbine		Т6					
Reference:	CNRH r027.2 Appendix B	Date :	26 June 2019				
Contractor/Client :	Mid Cork E	lectrical Limited					
Formation Report Reference	CNRH	r027.2 RevB					

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building ${\scriptstyle \bullet}$ The Park ${\scriptstyle \bullet}$ Carrickmines ${\scriptstyle \bullet}$ Dublin 18 ${\scriptstyle \bullet}$ Ireland

FORMATION APPROVAL

Project :	Cleanrat	h Wind Farm	
Turbine		т7	
Reference:	CNRH r027.2 Appendix B	Date :	20 May 2019
Contractor/Client :	Mid Cork E	lectrical Limited	
Formation Report Reference	CNRH	r027.2 RevB	

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building ${\scriptstyle \bullet}$ The Park ${\scriptstyle \bullet}$ Carrickmines ${\scriptstyle \bullet}$ Dublin 18 ${\scriptstyle \bullet}$ Ireland

FORMATION APPROVAL

Project :	Cleanrat	h Wind Farm	
Turbine		Т9	
Reference:	CNRH r027.2 Appendix B	Date :	9 April 2019
Contractor/Client :	Mid Cork E	lectrical Limited	
Formation Report Reference	CNRH	r027.2 RevB	

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building ${\scriptstyle \bullet}$ The Park ${\scriptstyle \bullet}$ Carrickmines ${\scriptstyle \bullet}$ Dublin 18 ${\scriptstyle \bullet}$ Ireland

FORMATION APPROVAL

Project :	Cleanrath Wind Farm	
Turbine	T10	
Reference:	CNRH r027.2 Appendix B Date :	26 June 2019
Contractor/Client :	Mid Cork Electrical Limited	l
Formation Report Reference	CNRH r027.2 RevB	

The formation associated with the above foundation has been inspected and tested in accordance with the contract specification, foundation design and WTG suppliers requirements and found to meet said requirements. Remedial or construction actions instructed at the time of excavation and inspection have been conducted by the contractor to the approval of lonic Consulting.

Signed

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

Approved

Coma Jullhan

Cormac Ó Dubhthaigh BE MEngSc CEng MIEI Civil Engineering Manager Ionic Consulting

IONIC CONSULTING LTD

The Hyde Building ${\scriptstyle \bullet}$ The Park ${\scriptstyle \bullet}$ Carrickmines ${\scriptstyle \bullet}$ Dublin 18 ${\scriptstyle \bullet}$ Ireland

APPENDIX C – Nordex N117-3600 loading & stiffness document

Fundament / Foundation

N117/3600 TS91 IEC2a/DIBt3

Rotorblatt / Rotor blades: NR58.5 Klimatische Bedingungen / Climate conditions: NCV & CCV

Ersteller / Created: A. E. Dang/MTF Prüfer / Checked: A. Schröder/MTF Klassifikation / Classification Freigabe / Released: H. Timm/MTF Dokument wird elektronisch verteilt. Original mit Unterschriften bei SCE / SDQ Document published in electronic form. Original at SCE / SDQ.

(c) Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg All rights reserved. Observe protection notice ISO 16016.

Dokumentnummer / Document number

K0822_077548_IN

Revision / Revision

03

Datum / Date

11.01.2017

Verantwortliche Abteilung / Department responsible

MTE / MTF

Nordex intern (IP)

Status / Status

AST

10627

Ersatz für Revision / Replaces Revision

02

Seite /Page:1/8

ÄNDERUNGSINDEX / REVISION INDEX

Änderung / <i>Revision</i>	Datum / Date	Bearbeiter / Author	Modifikation (Sektion) / Modification (Section)	AST
Rev.03	11.01.2017	A.E. Dang	Ergänzung horizontale Wegfeder, redaktionelle Änderungen/ addition of horizontal spring stiffness, editorial changes	10627
Rev.02	02.12.2016	A.E.Dang	Korrektur Temperaturbereich Kapitel 2.1.2, Spezifikation Betonfestigkeitsklassen Kapitel 3/ Modification temperature range chapter 2.1.2, specification concrete strength classes chapter 3	10627
Rev.01	01.08.2016	A.E. Dang	Datum auf Deckblatt angepasst/ modification date on 1st page	10627
Rev.00	19.05.2016	A.E. Dang	Erstellt / Created	10627

INHALTSVERZEICHNIS / TABLE OF CONTENT

ÄND	ERUNSINDEX / REVISION INDEX	2
INHA	ALTSVERZEICHNIS / TABLE OF CONTENT	2
1	ALLGEMEINSES / GENERAL	3
1.1	Gültigkeitsbereich / Scope	3
1.2	Mitgeltende Dokumente / References	3
2	LASTEN / LOADS	4
2.1	Technische Basisdaten / Parameters	4
2.1.1	Bedingungen für Erdbeben / Earthquake conditions	4
2.1.2	Klimatische Bedingungen / Climate conditions	4
2.2	Zusammenstellung der Lasten / Summary of Loads	5
2.2.1	Extremlasten / Extreme Loads	5
2.2.2	Extremlasten CCV / Extreme Loads CCV	6
2.2.3	Betriebslasten / Fatigue Loads	7
3	TURMANBINDUNG / CONNECTION TO THE TOWER	8

1. ALLGEMEINES / GENERAL

1.1 Gültigkeitsbereich / Scope

Diese Lastspezifikation stellt die Basisinformation für die Bemessung von Fundamenten für folgende Windenergieanlage der Firma Nordex dar. Darin sind die technischen Basisdaten sowie die Bemessungslasten für die Klimatischen Bedingungen NCV & CCV enthalten.

This specification serves as input information for the design of foundations for the following Nordex wind turbine. Therefore it defines its main parameters and the design loads for the different climate conditions NCV & CCV.

Typ / Type : N117/3600 Nabenhöhe / Hub height : 91m Turm / Tower : TS91 Windklasse / Wind class : IEC2a/DIBt3 Rotorblätter / Rotor blades : NR58.5

1.2 Referenzen / References

Dokumentennr., Revision, Ausgabe / Document Number, Rev. / Edition	Bezeichnung / Description				
Document Number, Nev. / Eution	Nordex Dokumente / Nordex Specifications				
K0801_077633_EN R00	Technical Report Loads Report N117/3600 TS91 NR58.5 50/60Hz IEC2a(Ed.3) / DIBt3, NCV				
K0801_077723_EN R00	Technical Report Loads Report N117/3600 TS91 NR58.5 50/60Hz IEC2a(Ed.3) CCV (Idling/CCV-B)				
E0002857206_DE R00	Bemessung Stahlrohrturm N117/3600 TS91 TiT IEC2a/DIBt3				
E0002864330_DE R00	Bemessung Stahlrohrturm N117/3600 TS91 TaT IEC2a/DIBt3				
	Normen / Standards				
GL IV-1:Edition 2010	Guideline for the certification of wind turbines. Hamburg : Germanischer Lloyd WindEnergie, 2010				
EN 1998-1:2010	Eurocode 8 - Design of structures for earthquake resistance Part 1: General rules, Seismic action and rules for buildings				
IEC 61400-1 (Ed.3)	Windturbine generator systems. Part 1: Safety requirements				
DIBt RiLi 2012-10	DIBt Richtlinie für Windenergieanlagen - Einwirkungen und Standsicherheitsnachweise für Turm und Gründung				

Die referenzierten Dokumente dienen nur der Nordex-internen Dokumentation und werden für das Fundament-Design nicht benötigt.

The above-mentioned documents are only for Nordex internal use and not required for the foundation design.

Lastspezifikation / Load Specification Fundament / Foundation N117/3600 TS91 IEC2a/DIBt3

2 LASTEN / LOADS

2.1 Technische Basisdaten / Parameters

$f_0 [Hz] =$	0.240	1. Biegeeigenfrequenz / First eigenfreqency in bending
$k_{\phi,dyn} \left[MNm/rad \right] =$	90000	berücksichtigte Bodendrehfeder / respective rotating spring rate
$k_{\phi,stat} \left[MNm/rad \right] =$	22500	statische Bodendrehfeder / static rotating spring rate
$k_{hor,dyn} [MN/m] =$	1180	horizontale Wegfeder/ horizontal spring stiffness
Schiefstellung Turm [mm/m] /		
Inclination tower [mm/m] =	11.1	
h _{TB} [m] =	1.1	Höhe Unterkante Turmfuß über Geländeoberkante / Position of tower bottom respective to top ground surface
m_{tower} [t] =	191	Turmmasse inkl. Einbauten / Mass of tower incl. Tower interiors
$m_{nacelle} [t] =$	186.6	Gondelmasse (inkl. Rotorblätter) / Total mass of nacelle incl. blades

2.1.1 Bedingungen für Erdbeben / Earthquake conditions

Norm / Standard : EN 1998-1:2010

Bodenklasse / Soil class: A, B, C, D, E

a [m/s²] =	0.3*g	(DIBt)	Bodenbeschleunigung / peak ground acceleration (PGA)
a [m/s²] =	0.3*g	(IEC)	Bodenbeschleunigung / peak ground acceleration (PGA)

2.1.2 Klimatische Bedingungen / Climate conditions

Normal climate version (englisch). "Normal climate" bedeutet Produktionsbetrieb bis -20 °C und NCV : Stillstand bzw. Trudeln zwischen -20 °C und -30 °C./ "Normal climate" is defined as production down to -20 °C and standstill or idling between -20 °C and -30 °C.

Cold climate version (englisch). "Cold climate" bedeutet Produktionsbetrieb bis -30 ℃ und Stillstand CCV : bzw. Trudeln zwischen -30 ℃ und -40 ℃./ "Cold climate" is defined as production down to -30 ℃ and standstill or idling between -30 ℃ and -40 ℃.

Die jeweils maßgebenden Lasten aus NCV und CCV Lasten sind bei der Fundamentauslegung zu berücksichtigen./ The decisive load cases from NCV and CCV loads have to be considered for the foundation design.

2.2 Zusammenfassung der Lasten / Summary of Loads

2.2.1 Extremlasten NCV / Extreme Loads NCV

Syste	m TB Definition:	Turmfuß / Tow	er Bottom					
	mlasten (absolute Maxima) ir me Loads (absolute maxima,				ncluding safety-fa	actors)		
LC	LC-Def.	FXTB	FYZTB	МХТВ	MYZTB	∆Mres	M _{res}	γ _f
	nur für interne Identifikation/ <i>for internal</i> <i>identification only</i>	kN	kN	kNm	kNm	kNm	kNm	-
8.1	IEC_Ed3_NCV_00_08010000_D_0	5987	117	-131	13175	3205 *	16380	1.60
5.2	IEC_Ed3_NCV_60_05020000_A_0	3567	1318	-826	58622	3205 *	61827	1.00
2.1	IEC_Ed3_NCV_60_02010204_B_0	5123	235	9447	15533	3205 *	18738	1.35
6.1	IEC Ed3 NCV 00 06010000 C 0	4984	1034	-2908	91564	3205 *	94769	1.35

Extre	ixtremlasten (absolute Maxima) inkl. Erdbebenlastfälle exkl. Sicherheit /								
Extre	Extreme Loads (absolute maxima) incl. earthquake + synchrone components (excl. safety-factors)								
LC	LC-Def.	FXTB	FYZTB	МХТВ	MYZTB	∆Mres	M _{res}	γ _f	
	nur für interne Identifikation/ for internal identification only	kN	kN	kNm	kNm	kNm	kNm	-	
5.2	IEC_Ed3_NCV_50_05020000_A_0	4628	295	-732	30374	3205 *	33579	1.00	
5.2	IEC_Ed3_NCV_60_05020000_A_0	3567	1318	-826	58622	3205 *	61827	1.00	
2.2	IEC_Ed3_NCV_60_02020000_B_0	3721	217	7385	20750	3205 *	23955	1.00	
2.3	IEC_Ed3_NCV_60_02030000_C_0	3909	825	-1510	73814	3205 *	77019	1.00	

*) maximaler Δ Mres- Wert aus Turmbernessung N117/3600 TS91 IEC2a/DIBt3 / max Δ Mres value from tower design N117/3600 TS91 IEC2a/DIBt3

Ständige Lasten (klaffende Fuge) für eine Überschreitenswahrscheinlichkeit von 1750 Stunden in 20 Jahren nach DIBt- Richtlinie 2012-10 Kap. 12.2.3.2 <i>Permanent Loads (gaping joint) for an exceedance probability of 1750 hours in 20 years acc. to DIBt 2012-10, chapter 12.2.3.2</i>									
	FXTB FYZTB MXTB MYZTB								
	kN kN kNm kNm								
50Hz DIBt3 4094 512 2237 46316									
60Hz IEC2a	4095	513	2239	46420					

Bemessungssituation nach DIN EN 1997-1 bzw. 1054 Design load cases according to EN 1997-1 and 1054								
	FXTB	FYZTB	МХТВ	MYZTB	∆M _{res}	M _{res}	γ _f	
	kN	kN	kNm	kNm	kNm	kNm	-	
BS-P	4984	1034	-2908	91564	3205 *	94769	1.35	
BS-T	4185	398	-798	36430	3205 *	39635	1.10	
BS-A	4295	899	-1635	81020	3205 *	84225	1.10	

2.2 Zusammenfassung der Lasten / Summary of Loads

2.2.2 Eingehüllte Extremlasten NCV und CCV / Envelope Extreme Loads NCV and CCV

Syste	m TB Definition:	Turmfuß / To	wer Bottom					
	mlasten (absolute Maxima) ink me Loads (absolute maxima)				including safety-	factors)		
LC	LC-Def.	FXTB	FYZTB	МХТВ	MYZTB	∆Mres	M _{res}	γ _f
	nur für interne Identifikation/ for internal identification only	kN	kN	kNm	kNm	[kNm]	[kNm]	-
8.1	IEC_Ed3_NCV_00_08010000_D_01	5987	117	-131	13175	3205 *	16380	1.60
5.2	IEC_Ed3_NCV_60_05020000_A_01	3567	1318	-826	58622	3205 *	61827	1.00
2.1	IEC_Ed3_NCV_50_02010204_B_02	5050	400	9463	26690	3205 *	29895	1.35
6.1	IEC_Ed3_CCVi_00_06010000_C_01	4960	1057	-1870	94207	3205 *	97412	1.35

	nlasten (absolute Maxima) inkl ne Loads (absolute maxima) in				(excl. safety-fact	ors)		
LC	LC-Def.	FXTB	FYZTB	МХТВ	MYZTB	∆Mres	M _{res}	γ _f
	nur für interne Identifikation/ for internal identification only	kN	kN	kNm	kNm	[kNm]	[kNm]	-
5.2	IEC_Ed3_NCV_50_05020000_A_03	4628	295	-732	30374	3205 *	33579	1.00
5.2	IEC_Ed3_NCV_60_05020000_A_01	3567	1318	-826	58622	3205 *	61827	1.00
2.2	IEC_Ed3_NCV_60_02020000_B_02	3721	217	7385	20750	3205 *	23955	1.00
2.3	IEC_Ed3_CCVB_50_02030000_B_0	3900	895	-975	81188	3205 *	84393	1.00

*) maximaler ΔMres- Wert aus Turmbemessung N117/3600 TS91 IEC2a/DIBt3 / max ΔMres value from tower design N117/3600 TS91 IEC2a/DIBt3

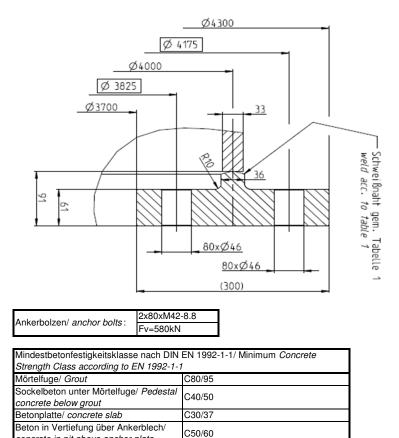
Ständige Lasten (klaffende Fuge) für eine Überschreitenswahrscheinlichkeit von 1750 Stunden in 20 Jahren nach DIBt- Richtlinie 2012-10 Kap. 12.2.3.2 Permanent Loads (gaping joint) for an exceedance probability of 1750 hours in 20 years acc. to DIBt 2012-10, chapter 12.2.3.2					
	FXTB	FYZTB	МХТВ	MYZTB	
	kN	kN	kNm	kNm	
50Hz DIBt3	4094	512	2237	46316	
60Hz IEC2a	4095	513	2239	46420	

Bemessungssituation nach DIN EN 1997-1 bzw. 1054 Design load cases according to EN 1997-1 and 1054							
	FXTB	FYZTB	МХТВ	MYZTB	ΔM_{res}	M _{res}	γ _f
	kN	kN	kNm	kNm	kNm	kNm	-
BS-P	4984	1034	-2908	91564	3205 *	94769	1.35
BS-T	4185	398	-798	36430	3205 *	39635	1.10
BS-A	4295	899	-1635	81020	3205 *	84225	1.10

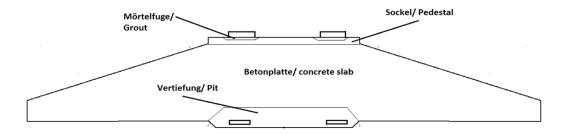
2.2.3 Betriebslasten Turmfuß / Fatigue Loads Tower bottom

Betriebslasten Schädigungsäquivalente ESK / Fatigue Loads Damage Equivalent Load Spectrum							
N m FXTB FZTB MXTB MYTE							
Lastspiele Cycles		kN	kN	kNm	kNm		
1.00E+07	3	132	335	5134	20252		
1.00E+07	4	106	290	4369	19880		
1.00E+07	5	99	281	4182	20463		
1.00E+07	6	98	284	4214	21301		
1.00E+07	7	101	290	4340	22209		
1.00E+07	8	105	297	4505	23150		
1.00E+07	9	110	306	4685	24146		
1.00E+07	10	116	315	4866	25251		
1.00E+07	11	121	326	5043	26516		
1.00E+07	12	127	339	5213	27952		
gamma-f - F	AT	1.0	1.0	1.0	1.0		
Mittellast <i>Mean load</i>		3863	298	-136	29316		

IEC2a 60Hz


Betriebslasten Schädigungsäquivalente ESK /								
Fatigue Loads Damage Equivalent Load Spectrum								
Ν	m	FXTB	FZTB	MXTB	MYTB			
Lastspiele Cycles		kN	kN	kNm	kNm			
1.00E+07	3	132	333	5132	20094			
1.00E+07	4	106	289	4367	19837			
1.00E+07	5	98	280	4181	20415			
1.00E+07	6	98	283	4214	21269			
1.00E+07	7	101	289	4340	22184			
1.00E+07	8	105	296	4505	23134			
1.00E+07	9	110	305	4683	24151			
1.00E+07	10	116	315	4862	25297			
1.00E+07	11	122	326	5036	26624			
1.00E+07	12	127	339	5204	28132			
gamma-f -	FAT	1.0	1.0	1.0	1.0			
Mittellast <i>Mean load</i>		3861	318	-141	29466			

Die Markov-Matrizen werden bei Bedarf als Excel-Datei beigefügt. / The Markov-matrices will be attached as excel-files if required.



concrete in pit above anchor plate

3. TURMANBINDUNG / CONNECTION TO THE TOWER

Wird eine geringere Betonfestigkeitsklasse verwendet, sind die Extrem- und Ermüdungsnachweise an diesen Stellen im Fundament für die neu gewählte Betonfestigkeitsklasse zu führen. / If the chosen concrete strength class(es) are lower than the above specified concrete strength class(es), the related foundation area(s) must be verified (for extreme and fatigue loads) for the chosen concrete strength class.

Release Page:

Document title:	Fundament N117-3600 TS91 IEC2a DIBt3
	Foundation N117-3600 TS91 IEC2a DIBt3

Document number:	K0822_077548_IN		
Revision:	3	Creator/Date:	Dang Aifung Emily: 2017-02-16
Language:	IN		
Department:	Engineering/MTF	Reviewer/Date:	Schroeder Anika: 2017-02-17
Classification (Confidentiality):	Nordex company document		
Status:	RELEASED	Approver/Date:	Timm Heike: 2017-02-20
Main AST:	10627		

This page is part of the document Fundament N117-3600 TS91 IEC2a DIBt3, Rev. 3/2017-02-20 with 9 pages. Document has been electronically created and released.